This paper presents an automatic efficient method to fit a statistical deformation model of the human face to 3D scan data. In a global to local fitting scheme, the shape parameters of this model are optimized such that the produced instance of the model accurately fits the 3D scan data of the input face. To increase the expressiveness of the model and to produce a tighter fit of the model, our method fits a set of predefined face components and blends these components afterwards. Quantitative evaluation shows an improvement of the fitting results when multiple components are used instead of one. Compared to existing methods, our fully automatic method achieves a higher accuracy of the fitting results. The accurately generated face instances are manifold meshes without noise and holes, and can be effectively used for 3D face recognition: We achieve 97.5% correct identification for 876 queries in the UND face set with 3D faces. Our results show that contour curve based face matching out...
Frank B. ter Haar, Remco C. Veltkamp