Knowing the norms of a domain is crucial, but there exist no repository of norms. We propose a method to extract them from texts: texts generally do not describe a norm, but rather how a state-of-affairs differs from it. Answers about the cause of the state-of-affairs described often reveal the implicit norm. We apply this idea to the domain of driving, and validate it by designing algorithms that identify, in a text, the "basic" norms to which it refers implicitly.