Sciweavers

AUSDM
2006
Springer

Accuracy Estimation With Clustered Dataset

14 years 3 months ago
Accuracy Estimation With Clustered Dataset
If the dataset available to machine learning results from cluster sampling (e.g. patients from a sample of hospital wards), the usual cross-validation error rate estimate can lead to biased and misleading results. An adapted cross-validation is described for this case. Using a simulation, the sampling distribution of the generalization error rate estimate, under cluster or simple random sampling hypothesis, are compared to the true value. The results highlight the impact of the sampling design on inference: clearly, clustering has a significant impact; the repartition between learning set and test set should result from a random partition of the clusters, and not from a random partition of the examples. With cluster sampling, standard cross-validation underestimates the generalization error rate, and is deficient for model selection. These results are illustrated with a real application of automatic identification of spoken language.
Ricco Rakotomalala, Jean-Hugues Chauchat, Fran&cce
Added 20 Aug 2010
Updated 20 Aug 2010
Type Conference
Year 2006
Where AUSDM
Authors Ricco Rakotomalala, Jean-Hugues Chauchat, François Pellegrino
Comments (0)