In this paper, we propose an approach to the computation of more accurate divided differences for the interpolation in the Newton form of the matrix exponential propagator ϕ(hA)v, ϕ(z) = (ez −1)/z. In this way, it is possible to approximate ϕ(hA)v with larger time step size h than with traditionally computed divided differences, as confirmed by numerical examples. The technique can be also extended to “higher” order ϕk functions, k ≥ 0. AMS Subject Classifications: 65D05, 65D20, 65M20.