Sciweavers

ECAI
2000
Springer

Achieving Coordination through Combining Joint Planning and Joint Learning

14 years 3 months ago
Achieving Coordination through Combining Joint Planning and Joint Learning
There are two major approaches to activity coordination in multiagent systems. First, by endowing the agents with the capability to jointly plan, that is, to jointly generate hypothetical activity sequences. Second, by endowing the agents with the capability to jointly learn, that is, to jointly choose the actions to be executed on the basis of what they know from experience about the interdependencies of their actions. This paper describes a new algorithm called JPJL (“Joint Planning and Joint Learning”) that combines both approaches. The primary motivation behind this algorithm is to bring together the advantages of joint planning and joint learning while avoiding their disadvantages. Experimental results are provided that illustrate the potential benefits and shortcomings of the JPJL algorithm. 1 Motivation Multiagent Systems (MAS)—systems in which several interacting, intelligent and autonomous entities called agents pursue some set of goals or perform some set of tasks—ha...
Gerhard Weiss
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2000
Where ECAI
Authors Gerhard Weiss
Comments (0)