—In order to protect privacy, Radio Frequency Identification (RFID) systems employ Privacy-Preserving Authentication (PPA) to allow valid readers to explicitly authenticate their dominated tags without leaking private information. Typically, an RF tag sends an encrypted message to the reader, then the reader searches for the key that can decrypt the cipher to identify the tag. Due to the large-scale deployment of today’s RFID systems, the key search scheme for any PPA requires a short response time. Previous designs construct balance-tree based key management structures to accelerate the search speed to O(logN), where N is the number of tags. Being efficient, such approaches are vulnerable to compromising attacks. By capturing a small number of tags, compromising attackers are able to identify other tags that have not been corrupted. To address this issue, we propose an AntiCompromising authenticaTION protocol, ACTION, which employs a novel sparse tree architecture, such that the k...