In this paper we propose an approach for action recognition based on a vocabulary of local motion-appearance features and fast approximate search in a large number of trees. Large numbers of features with associated motion vectors are extracted from video data and are represented by many trees. Multiple interest point detectors are used to provide features for every frame. The motion vectors for the features are estimated using optical flow and a descriptor based matching. The features are combined with image segmentation to estimate dominant homographies, and then separated into static and moving ones despite the camera motion. Features from a query sequence are matched to the trees and vote for action categories and their locations. Large number of trees make the process efficient and robust. The system is capable of simultaneous categorisation and localisation of actions using only a few frames per sequence. The approach obtains excellent performance on standard action recognition...