This paper presents a novel 3D deformable surface that we call an active polyhedron. Rooted in surface evolution theory, an active polyhedron is a polyhedral surface whose vertices deform to minimize a regional and/or boundarybased energy functional. Unlike continuous active surface models, the vertex motion of an active polyhedron is computed by integrating speed terms over polygonal faces of the surface. The resulting ordinary differential equations (ODEs) provide improved robustness to noise and allow for larger time steps compared to continuous active surfaces implemented with level set methods. We describe an electrostatic regularization technique that achieves global regularization while better preserving sharper local features. Experimental results demonstrate the effectiveness of an active polyhedron in solving segmentation problems as well as surface reconstruction from unorganized points.
Gregory G. Slabaugh, Gozde B. Unal