Sciweavers

DM
2011

Acyclic vertex coloring of graphs of maximum degree 5

13 years 7 months ago
Acyclic vertex coloring of graphs of maximum degree 5
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles.  The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic  vertex coloring of graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs G ∈ F. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree  5 and give a linear time algorithm to achieve this bound.
Kishore Yadav, Satish Varagani, Kishore Kothapalli
Added 14 May 2011
Updated 14 May 2011
Type Journal
Year 2011
Where DM
Authors Kishore Yadav, Satish Varagani, Kishore Kothapalli, V. Ch. Venkaiah
Comments (0)