Cerebral aneurysms are a vascular dilatation induced by a pathological change of the vessel wall and often require treatment to avoid rupture. Therefore, it is of main interest, to estimate the risk of rupture, to gain a deeper understanding of aneurysm genesis, and to plan an actual intervention, the surface morphology and the internal blood flow characteristics. Visual exploration is primarily used to understand such complex and variable type of data. Since the blood flow data is strongly influenced by the surrounding vessel morphology both have to be visually combined to efficiently support visual exploration. Since the flow is spatially embedded in the surrounding aneurysm surface, occlusion problems have to be tackled. Thereby, a meaningful visual reduction of the aneurysm surface that still provides morphological hints is necessary. We accomplish this by applying an adapted illustrative rendering style to the aneurysm surface. Our contribution lies in the combination and adaptio...