Abstract. In the community of sentiment analysis, supervised learning techniques have been shown to perform very well. When transferred to another domain, however, a supervised sentiment classifier often performs extremely bad. This is so-called domain-transfer problem. In this work, we attempt to attack this problem by making the maximum use of both the old-domain data and the unlabeled new-domain data. To leverage knowledge from the old-domain data, we proposed an effective measure, i.e., Frequently Co-occurring Entropy (FCE), to pick out generalizable features that occur frequently in both domains and have similar occurring probability. To gain knowledge from the newdomain data, we proposed Adapted Na