New heuristics and strategies have enabled major advancements in SAT solving in recent years. However, experimentation has shown that there is no winning solution that works in all cases. A degradation of orders of magnitude can be observed if the wrong heuristic is chosen. The problem is that it is impossible to know, in advance, which heuristics are best for a given problem. Consequently, many ideas - those that turn out to be useful for a small subset of the cases, but significantly increase run times on most others - are discarded. We propose the notion of Adaptive Solving as a possible solution to this problem. In our framework, the SAT solver monitors the effectiveness of the search on-the-fly using a Performance Metric. The metric gives a score according to its assessment of the search progress. Based on this score, one or more heuristics are turned on or off. The goal is to use a specific heuristic or strategy when it is advantageous, and turn it off when it is not, before it ...