Sciweavers

CORR
2010
Springer

Adaptive Bound Optimization for Online Convex Optimization

13 years 11 months ago
Adaptive Bound Optimization for Online Convex Optimization
We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm's regret bounds are worst-case optimal, and for certain realistic classes of loss functions they are much better than existing bounds. These bounds are problem-dependent, which means they can exploit the structure of the actual problem instance. Critically, however, our algorithm does not need to know this structure in advance. Rather, we prove competitive guarantees that show the algorithm provides a bound within a constant factor of the best possible bound (of a certain functional form) in hindsight.
H. Brendan McMahan, Matthew J. Streeter
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where CORR
Authors H. Brendan McMahan, Matthew J. Streeter
Comments (0)