We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm's regret bounds are worst-case optimal, and for certain realistic classes of loss functions they are much better than existing bounds. These bounds are problem-dependent, which means they can exploit the structure of the actual problem instance. Critically, however, our algorithm does not need to know this structure in advance. Rather, we prove competitive guarantees that show the algorithm provides a bound within a constant factor of the best possible bound (of a certain functional form) in hindsight.
H. Brendan McMahan, Matthew J. Streeter