Sciweavers

SDM
2010
SIAM

Adaptive Informative Sampling for Active Learning

14 years 1 months ago
Adaptive Informative Sampling for Active Learning
Many approaches to active learning involve periodically training one classifier and choosing data points with the lowest confidence. An alternative approach is to periodically choose data instances that maximize disagreement among the label predictions across an ensemble of classifiers. Many classifiers with different underlying structures could fit this framework, but some ensembles are more suitable for some data sets than others. The question then arises as to how to find the most suitable ensemble for a given data set. In this work we introduce a method that begins with a heterogeneous ensemble composed of multiple instances of different classifier types, which we call adaptive informative sampling (AIS). The algorithm periodically adds data points to the training set, adapts the ratio of classifier types in the heterogeneous ensemble in favor of the better classifier type, and optimizes the classifiers in the ensemble using stochastic methods. Experimental results show that the p...
Zhenyu Lu, Xindong Wu, Josh Bongard
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2010
Where SDM
Authors Zhenyu Lu, Xindong Wu, Josh Bongard
Comments (0)