We present a technique for performing high-dimensional filtering of images and videos in real time. Our approach produces high-quality results and accelerates filtering by computing the filter’s response at a reduced set of sampling points, and using these for interpolation at all N input pixels. We show that for a proper choice of these sampling points, the total cost of the filtering operation is linear both in N and in the dimension d of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, as well as for an algorithm to compute the sampling points. This provides a sound theoretical justification for our method and for its properties. The resulting filter is quite flexible, being capable of producing responses that approximate either standard Gaussian, bilateral, or non-local-means filters. Such flexibility also allows us to demonstrat...
Eduardo S. L. Gastal, Manuel M. Oliveira