In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called metadata. They use meta-data negotiations to eliminate the transmission of redundant data throughoutthe network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find ...