Strassen’s matrix multiplication (MM) has benefits with respect to any (highly tuned) implementations of MM because Strassen’s reduces the total number of operations. Strassen achieved this operation reduction by replacing computationally expensive MMs with matrix additions (MAs). For architectures with simple memory hierarchies, having fewer operations directly translates into an efficient utilization of the CPU and, thus, faster execution. However, for modern architectures with complex memory hierarchies, the operations introduced by the MAs have a limited in-cache data reuse and thus poor memory-hierarchy utilization, thereby overshadowing the (improved) CPU utilization, and making Strassen’s algorithm (largely) useless on its own. In this paper, we investigate the interaction between Strassen’s effective performance and the memory-hierarchy organization. We show how to exploit Strassen’s full potential across different architectures. We present an easy-to-use adaptive ...