We propose the first distributed discrete-log key generation (DLKG) protocol from scratch which is adaptively-secure in the non-erasure model, and at the same time completely avoids the use of interactive zero-knowledge proofs. As a consequence, the protocol can be proven secure in a universally-composable (UC) like framework which prohibits rewinding. We prove the security in what we call the single-inconsistent-player (SIP) UC model, which guarantees arbitrary composition as long as all protocols are executed by the same players. As applications, we propose a fully UC threshold Schnorr signature scheme, a fully UC threshold DSS signature scheme, and a SIP UC threshold Cramer-Shoup cryptosystem. Our results are based on a new adaptively-secure Feldman VSS scheme. Although adaptive security was already addressed by Feldman in the original paper, the scheme requires secure communication, secure erasure, and either a linear number of rounds or digital signatures to resolve disputes. Our...