Social network analysis has attracted increasing attention in recent years. In many social networks, besides friendship links amongst users, the phenomenon of users associating themselves with groups or communities is common. Thus, two networks exist simultaneously: the friendship network among users, and the affiliation network between users and groups. In this paper, we tackle the affiliation recommendation problem, where the task is to predict or suggest new affiliations between users and communities, given the current state of the friendship and affiliation networks. More generally, affiliations need not be community affiliations - they can be a user's taste, so affiliation recommendation algorithms have applications beyond community recommendation. In this paper, we show that information from the friendship network can indeed be fruitfully exploited in making affiliation recommendations. Using a simple way of combining these networks, we suggest two models of user-community ...