We revisit the problem of model-based object recognition for intensity images and attempt to address some of the shortcomings of existing Bayesian methods, such as unsuitable priors and the treatment of residuals with a non-robust error norm. We do so by using a reformulation of the Huber metric and carefully chosen prior distributions. Our proposed method is invariant to 2-dimensional affine transformations and, because it is relatively easy to train and use, it is suited for general object matching problems.
Vasileios Zografos, Bernard F. Buxton