Skyline queries help users make intelligent decisions over complex data, where different and often conflicting criteria are considered. A challenging problem is to support skyline queries in distributed environments, where data is scattered over independent sources. The query response time of skyline processing over distributed data depends on the amount of transferred data and the query processing cost at each server. In this paper, we propose AGiDS, a framework for efficient skyline processing over distributed data. Our approach reduces significantly the amount of transferred data, by using a grid-based data summary that captures the data distribution on each server. AGiDS consists of two phases to compute the result: in the first phase the querying server gathers the grid-based summary, whereas in the second phase a skyline request is sent only to the servers that may contribute to the skyline result set asking only for the points of non-dominated regions. We provide an experime...
João B. Rocha-Junior, Akrivi Vlachou, Chris