We introduce a novel and inexpensive approach for the temporal alignment of speech to highly imperfect transcripts from automatic speech recognition (ASR). Transcripts are generated for extended lecture and presentation videos, which in some cases feature more than 30 speakers with different accents, resulting in highly varying transcription qualities. In our approach we detect a subset of phonemes in the speech track, and align them to the sequence of phonemes extracted from the transcript. We report on the results for 4 speech-transcript sets ranging from 22 to 108 minutes. The alignment performance is promising, showing a correct matching of phonemes within 10, 20, 30 second error margins for more than 60%, 75%, 90% of text, respectively, on average. For perfect manually generated transcripts, more than 75% of text is correctly aligned within 5 seconds.
Alexander Haubold, John R. Kender