High quality segmentation of brain MR images is a challenging task. To deal with this problem many automatic segmentation methods rely on atlas information of anatomical structures. We will further investigate this line of research by introducing hierarchical representations of anatomical structures in an Expectation-Maximization like framework. This new approach enables us to divide a complex segmentation scenario into less difficult sub-problems reducing the scenario's statistical complexity. We will demonstrate the method's strength by segmenting a set of brain MR images into 31 different anatomical structures as well as comparing it to other methods.
Kilian M. Pohl, W. Eric L. Grimson, Sylvain Bouix,