The use of point sets instead of meshes became more popular during the last years. We present a new method for anisotropic fairing of a point sampled surface using an anisotropic geometric mean curvature flow. The main advantage of our approach is that the evolution removes noise from a point set while it detects and enhances geometric features of the surface such as edges and corners. We derive a shape operator, principal curvature properties of a point set, and an anisotropic Laplacian of the surface. This anisotropic Laplacian reflects curvature properties which can be understood as the point set analogue of Taubin's curvature-tensor for polyhedral surfaces. We combine these discrete tools with techniques from geometric diffusion and image processing. Several applications demonstrate the efficiency and accuracy of our method. CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling--Curve, surface, solid and object representationsCurve, surface, sol...