We explore the application of Small-Scale Reconfigurability (SSR) to graphics hardware. SSR is an architectural technique wherein functionality common to multiple subunits is reused rather than replicated, yielding high-performance reconfigurable hardware with reduced area requirements. We show that SSR can be used effectively in programmable graphics architectures to allow double-precision computation without affecting the performance of single-precision calculations and to increase fragment shader performance with a minimal impact on chip area.
Kevin Dale, Jeremy W. Sheaffer, Vinu Vijay Kumar,