Sciweavers

CORR
2010
Springer

Approaching Throughput-optimality in Distributed CSMA Scheduling Algorithms with Collisions

14 years 15 days ago
Approaching Throughput-optimality in Distributed CSMA Scheduling Algorithms with Collisions
Abstract--It was shown recently that carrier sense multiple access (CSMA)-like distributed algorithms can achieve the maximal throughput in wireless networks (and task processing networks) under certain assumptions. One important but idealized assumption is that the sensing time is negligible, so that there is no collision. In this paper, we study more practical CSMA-based scheduling algorithms with collisions. First, we provide a Markov chain model and give an explicit throughput formula that takes into account the cost of collisions and overhead. The formula has a simple form since the Markov chain is "almost" time-reversible. Second, we propose transmission-length control algorithms to approach throughput-optimality in this case. Sufficient conditions are given to ensure the convergence and stability of the proposed algorithms. Finally, we characterize the relationship between the CSMA parameters (such as the maximum packet lengths) and the achievable capacity region.
Libin Jiang, Jean C. Walrand
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where CORR
Authors Libin Jiang, Jean C. Walrand
Comments (0)