Abstract— We consider the network control problem for wireless networks with flow level dynamics under the general k-hop interference model. In particular, we investigate the control problem in low load and high load regimes. In the low load regime, we show that the network can be stabilized by a regulated maximal scheduling policy considering flow level dynamics if the offered load satisfies a constraining bound condition. Because maximal matching is a general scheduling rule whose implementation is not specified, we propose a constant-time and distributed scheduling algorithm for a general k-hop interference model which can approximate the maximal scheduling policy within an arbitrarily small error. Under the stability condition, we show how to calculate transmission rates for different user classes such that the long-term (time average) network utility is maximized. Our results imply that congestion control is unnecessary when the offered load is low and optimal user rates can...
Long Le, Ravi R. Mazumdar