Sciweavers

FOCS
2006
IEEE

Approximate Min-Max Theorems of Steiner Rooted-Orientations of Hypergraphs

14 years 5 months ago
Approximate Min-Max Theorems of Steiner Rooted-Orientations of Hypergraphs
Given an undirected hypergraph and a subset of vertices S ⊆ V with a specified root vertex r ∈ S, the STEINER ROOTED-ORIENTATION problem is to find an orientation of all the hyperedges so that in the resulting directed hypergraph the “connectivity” from the root r to the vertices in S is maximized. This is motivated by a multicasting problem in undirected networks as well as a generalization of some classical problems in graph theory. The main results of this paper are the following approximate min-max relations: • Given an undirected hypergraph H, if S is 2khyperedge-connected in H, then H has a Steiner rooted k-hyperarc-connected orientation. • Given an undirected graph G, if S is 2k-elementconnected in G, then G has a Steiner rooted kelement-connected orientation. Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor approximation algorithms for both problems. The proofs are based on submodular techniques, and a gr...
Tamás Király, Lap Chi Lau
Added 11 Jun 2010
Updated 11 Jun 2010
Type Conference
Year 2006
Where FOCS
Authors Tamás Király, Lap Chi Lau
Comments (0)