Sciweavers

ALGORITHMICA
1999

Approximating Latin Square Extensions

14 years 4 days ago
Approximating Latin Square Extensions
In this paper, we consider the following question: what is the maximum number of entries that can be added to a partially lled latin square? The decision version of this question is known to be NP-complete. We present two approximation algorithms for the optimization version of this question. We rst prove that the greedy algorithm achieves a factor of 1/3. We then use insights derived from the linear relaxation of an integer program to obtain an algorithm based on matchings that achieves a better performance guarantee of 1/2. These are the rst known polynomial-time approximation algorithms for the latin square completion problem that achieve non-trivialworst-case performance guarantees. Our motivationderives fromapplications to the problems of lightpath assignment and switch con guration in wavelength routed multihop optical networks. 1 Motivation
Ravi Kumar, Alexander Russell, Ravi Sundaram
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 1999
Where ALGORITHMICA
Authors Ravi Kumar, Alexander Russell, Ravi Sundaram
Comments (0)