Sciweavers

APAL
2008

Arithmetic of Dedekind cuts of ordered Abelian groups

13 years 11 months ago
Arithmetic of Dedekind cuts of ordered Abelian groups
We study Dedekind cuts on ordered Abelian groups. We introduce a monoid structure on them, and we characterise, via a suitable representation theorem, the universal part of the theory of such structures. MSC: 06F05; 06F20 Key words: Dedekind cut; Dom; Ordered group Contents 1 Dedekind cuts of ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Dedekind cuts of ordered groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Group extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Doms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Basic definitions and facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Sub-doms and dom-homomorphisms . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Type of doms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Associated group and multiplicity . . . . . . . . . . . . . . . . . . . ...
Antongiulio Fornasiero, Marcello Mamino
Added 08 Dec 2010
Updated 08 Dec 2010
Type Journal
Year 2008
Where APAL
Authors Antongiulio Fornasiero, Marcello Mamino
Comments (0)