We investigate the problem of atomic commit in transactional database systems built on top of Distributed Hash Tables. Therefore we present a framework for DHTs to provide strong data consistency and transactions on data stored in a decentralized way. To solve the atomic commit problem within distributed transactions, we propose to use an adaption of Paxos commit as a non-blocking algorithm. We exploit the symmetric replication technique existing in the DKS DHT to determine which nodes are necessary to execute the commit algorithm. By doing so, we achieve a lower number of communication rounds in contrast to applying traditional Three-Phase-Commit protocols. We also show how the proposed solution can cope with dynamism due to churn in DHTs. Our solution works correctly relying only on an inaccurate failure detection of node failure, what is necessary for systems running over the Internet.