We show attacks on several cryptographic schemes that have recently been proposed for achieving various security goals in sensor networks. Roughly speaking, these schemes all use “perturbation polynomials” to add “noise” to polynomial-based systems that offer informationtheoretic security, in an attempt to increase the resilience threshold while maintaining efficiency. We show that the heuristic security arguments given for these modified schemes do not hold, and that they can be completely broken once we allow even a slight extension of the parameters beyond those achieved by the underlying information-theoretic schemes. Our attacks apply to the key predistribution scheme of Zhang et al. (MobiHoc 2007), the access-control schemes of Subramanian et al. (PerCom 2007), and the authentication schemes of Zhang et al. (INFOCOM 2008).