In the Attractive Traveling Salesman Problem the vertex set is partitioned into facility vertices and customer vertices. A maximum profit tour must be constructed on a subset of the facility vertices. Profit is computed through an attraction function: every visited facility vertex attracts a portion of the profit from the customer vertices based on the distance between the facility and customer vertices, and the attractiveness of the facility vertex. A gravity model is used for computing the profit attraction. The problem is formulated as an integer non-linear program. A linearization is proposed and is strengthened