Recent work on online auctions for digital goods has explored the role of optimal stopping theory — particularly secretary problems — in the design of approximately optimal online mechanisms. This work generally assumes that the size of the market (number of bidders) is known a priori, but that the mechanism designer has no knowledge of the distribution of bid values. However, in many real-world applications (such as online ticket sales), the opposite is true: the seller has distributional knowledge of the bid values (e.g., via the history of past transactions in the market), but there is uncertainty about market size. Adopting the perspective of automated mechanism design, introduced by Conitzer and Sandholm, we develop algorithms that compute an optimal, or approximately optimal, online auction mechanism given access to this distributional knowledge. Our main results are twofold. First, we show that when the seller does not know the market size, no constant-approximation to the ...
Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, Tu