The explosion of Web opinion data has made essential the need for automatic tools to analyze and understand people’s sentiments toward different topics. In most sentiment analysis applications, the sentiment lexicon plays a central role. However, it is well known that there is no universally optimal sentiment lexicon since the polarity of words is sensitive to the topic domain. Even worse, in the same domain the same word may indicate different polarities with respect to different aspects. For example, in a laptop review, “large” is negative for the battery aspect while being positive for the screen aspect. In this paper, we focus on the problem of learning a sentiment lexicon that is not only domain specific but also dependent on the aspect in context given an unlabeled opinionated text collection. We propose a novel optimization framework that provides a unified and principled way to combine different sources of information for learning such a context-dependent sentiment...