Sciweavers

ICWE
2005
Springer

Automatic Optimization of Web Recommendations Using Feedback and Ontology Graphs

14 years 5 months ago
Automatic Optimization of Web Recommendations Using Feedback and Ontology Graphs
Abstract. Web recommendation systems have become a popular means to improve the usability of web sites. This paper describes the architecture of a rulebased recommendation system and presents its evaluation on two real-life applications. The architecture combines recommendations from different algorithms in a recommendation database and applies feedback-based machine learning to optimize the selection of the presented recommendations. The recommendations database also stores ontology graphs, which are used to semantically enrich the recommendations. We describe the general architecture of the system and the test setting, illustrate the application of several optimization approaches and present comparative results.
Nick Golovin, Erhard Rahm
Added 27 Jun 2010
Updated 27 Jun 2010
Type Conference
Year 2005
Where ICWE
Authors Nick Golovin, Erhard Rahm
Comments (0)