The Smart information retrieval project emphasizes completely automatic approaches to the understanding and retrieval of large quantities of text. We continue our work in TREC 3, performing runs in the routing, ad-hoc, and foreign language environments. Our major focus is massive query expansion: adding from 300 to 530 terms to each query. These terms come from known relevant documents in the case of routing, and from just the top retrieved documents in the case of ad-hoc and Spanish. This approach improves eectiveness from 7% to 25% in the various experiments. Other ad-hoc work extends our investigations into combining global similarities, giving an overall indication of how a document matches a query, with local similarities identifying a smaller part of the document which matches the query. Using an overlapping text window denition of \local", we achieve a 16% improvement.