Sciweavers

KBS
2007

Automatic species identification of live moths

14 years 14 days ago
Automatic species identification of live moths
A collection consisting of the images of 774 live moth individuals, each moth belonging to one of 35 different UK species, was analysed to determine if data mining techniques could be used effectively for automatic species identification. Feature vectors were extracted from each of the moth images and the machine learning toolkit WEKA was used to classify the moths by species using the feature vectors. Whereas a previous analysis of this image dataset reported in the literature [1] required that each moth’s least worn wing region be highlighted manually for each image, WEKA was able to achieve a greater level of accuracy (85%) using support vector machines without manual specification of a region of interest at all. This paper describes the features that were extracted from the images, and the various experiments using different classifiers and datasets that were performed. The results show that data mining can be usefully applied to the problem of automatic species identification of...
Michael Mayo, Anna T. Watson
Added 16 Dec 2010
Updated 16 Dec 2010
Type Journal
Year 2007
Where KBS
Authors Michael Mayo, Anna T. Watson
Comments (0)