Sciweavers

COMBINATORICS
2000

Automorphisms and Enumeration of Switching Classes of Tournaments

13 years 11 months ago
Automorphisms and Enumeration of Switching Classes of Tournaments
Two tournaments T1 and T2 on the same vertex set X are said to be switching equivalent if X has a subset Y such that T2 arises from T1 by switching all arcs between Y and its complement X nY . result of this paper is a characterisation of the abstract nite groups which are full automorphism groups of switching classes of tournaments: they are those whose Sylow 2-subgroups are cyclic or dihedral. Moreover, if G is such a group, then there is a switching class C, with Aut(C) = G, such that every subgroup of G of odd order is the full automorphism group of some tournament in C. Unlike previous results of this type, we do not give an explicit construction, but only an existence proof. The proof follows as a special case of a result on the full automorphism group of random G-invariant digraphs selected from a certain class of probability distributions. We also show that a permutation group G, acting on a set X, is contained in the automorphism group of some switching class of tournaments w...
László Babai, Peter J. Cameron
Added 17 Dec 2010
Updated 17 Dec 2010
Type Journal
Year 2000
Where COMBINATORICS
Authors László Babai, Peter J. Cameron
Comments (0)