Abstract--The continuously increasing complexity of communication networks and the increasing diversity and unpredictability of traffic demand has led to a consensus view that the automation of the management process is inevitable. Currently, network and service management techniques are mostly manual, requiring human intervention, and leading to slow response times, high costs, and customer dissatisfaction. In this paper we present AutoNet, a self-organizing management system for core networks where robustness to environmental changes, namely traffic shifts, topology changes, and community of interest is viewed as critical. A framework to design robust control strategies for autonomic networks is proposed. The requirements of the network are translated to graph-theoretic metrics and the management system attempts to automatically evolve to a stable and robust control point by optimizing these metrics. The management approach is inspired by ideas from evolutionary science where a metri...