Sciweavers

SMA
2010
ACM

Barycentric interpolation and mappings on smooth convex domains

13 years 11 months ago
Barycentric interpolation and mappings on smooth convex domains
In a recent paper, Warren, Schaefer, Hirani, and Desbrun proposed a simple method of interpolating a function defined on the boundary of a smooth convex domain, using an integral kernel with properties similar to those of barycentric coordinates on simplexes. When applied to vector-valued data, the interpolation can map one convex region into another, with various potential applications in computer graphics, such as curve and image deformation. In this paper we establish some basic mathematical properties of barycentric kernels in general, including the interpolation property and a formula for the Jacobian of the mappings they generate. We then use this formula to prove the injectivity of the mapping of Warren et al. Categories and Subject Descriptors
Michael S. Floater, Jirí Kosinka
Added 06 Dec 2010
Updated 06 Dec 2010
Type Conference
Year 2010
Where SMA
Authors Michael S. Floater, Jirí Kosinka
Comments (0)