Sciweavers

TSP
2008

Bayesian Filtering With Random Finite Set Observations

13 years 11 months ago
Bayesian Filtering With Random Finite Set Observations
This paper presents a novel and mathematically rigorous Bayes recursion for tracking a target that generates multiple measurements with state dependent sensor field of view and clutter. Our Bayesian formulation is mathematically wellfounded due to our use of a consistent likelihood function derived from random finite set theory. It is established that under certain assumptions, the proposed Bayes recursion reduces to the cardinalized probability hypothesis density (CPHD) recursion for a single target. A particle implementation of the proposed recursion is given. Under linear Gaussian and constant sensor field of view assumptions, an exact closed form solution to the proposed recursion is derived, and efficient implementations are given. Extensions of the closed form recursion to accommodate mild non-linearities are also given using linearization and unscented transforms.
Ba-Tuong Vo, Ba-Ngu Vo, Antonio Cantoni
Added 16 Dec 2010
Updated 16 Dec 2010
Type Journal
Year 2008
Where TSP
Authors Ba-Tuong Vo, Ba-Ngu Vo, Antonio Cantoni
Comments (0)