A novel behavioral detection framework is proposed to detect mobile worms, viruses and Trojans, instead of the signature-based solutions currently available for use in mobile devices. First, we propose an efficient representation of malware behaviors based on a key observation that the logical ordering of an application's actions over time often reveals the malicious intent even when each action alone may appear harmless. Then, we generate a database of malicious behavior signatures by studying more than 25 distinct families of mobile viruses and worms targeting the Symbian OS--the most widely-deployed handset OS--and their variants. Next, we propose a two-stage mapping technique that constructs these signatures at run-time from the monitored system events and API calls in Symbian OS. We discriminate the malicious behavior of malware from the normal behavior of applications by training a classifier based on Support Vector Machines (SVMs). Our evaluation on both simulated and real...
Abhijit Bose, Xin Hu, Kang G. Shin, Taejoon Park