State-of-the-art solvers for Quantified Boolean Formulas (QBF) have employed many techniques from the field of Boolean Satisfiability (SAT) including the use of Conjunctive Normal Form (CNF) in representing the QBF formula. Although CNF has worked well for SAT solvers, recent work has pointed out some inherent problems with using CNF in QBF solvers. In this paper, we describe a QBF solver, called CirQit (Cir-Q-it) that utilizes a circuit representation rather than CNF. The solver can exploit its circuit representation to avoid many of the problems of CNF. For example, we show how this approach generalizes some previously proposed techniques for overcoming the disadvantages of CNF for QBF solvers. We also show how important techniques like clause and cube learning can be made to work with a circuit representation. Finally, we empirically compare the resulting solver against other state-of-the-art QBF solvers, demonstrating that our approach can often outperform these solvers.