Many combinatorial optimization problems such as the bin packing and multiple knapsack problems involve assigning a set of discrete objects to multiple containers. These problems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, including nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multipl...
Alex S. Fukunaga, Richard E. Korf