Sciweavers

IJON
2006

A binary neural decision table classifier

14 years 13 days ago
A binary neural decision table classifier
In this paper, we introduce a neural network -based decision table algorithm. We focus on the implementation details of the decision table algorithm when it is constructed using the neural network. Decision tables are simple supervised classifiers which, Kohavi demonstrated, can outperform state-of-the-art classifiers such as C4.5. We couple this power with the efficiency and flexibility of a binary associative-memory neural network. We demonstrate how the binary associative-memory neural network can form the decision table index to map between attribute values and data records. We also show how two attribute selection algorithms, which may be used to pre-select the attributes for the decision table, can easily be implemented within the binary associative-memory neural framework. The first attribute selector uses mutual information between attributes and classes to select the attributes that classify best. The second attribute selector uses a probabilistic approach to evaluate randoml...
Victoria J. Hodge, Simon O'Keefe, Jim Austin
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where IJON
Authors Victoria J. Hodge, Simon O'Keefe, Jim Austin
Comments (0)