Sciweavers

TIP
2011

Boosting Color Feature Selection for Color Face Recognition

13 years 7 months ago
Boosting Color Feature Selection for Color Face Recognition
—This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate po...
Jae Young Choi, Yong Man Ro, Konstantinos N. Plata
Added 29 May 2011
Updated 29 May 2011
Type Journal
Year 2011
Where TIP
Authors Jae Young Choi, Yong Man Ro, Konstantinos N. Plataniotis
Comments (0)