—Voice activity detection (VAD) is an important topic in audio signal processing. Contextual information is important for improving the performance of VAD at low signal-to-noise ratios. Here we explore contextual information by machine learning methods at three levels. At the top level, we employ an ensemble learning framework, named multi-resolution stacking (MRS), which is a stack of ensemble classifiers. Each classifier in a building block inputs the concatenation of the predictions of its lower building blocks and the expansion of the raw acoustic feature by a given window (called a resolution). At the middle level, we describe a base classifier in MRS, named boosted deep neural network (bDNN). bDNN first generates multiple base predictions from different contexts of a single frame by only one DNN and then aggregates the base predictions for a better prediction of the frame, and it is different from computationally-expensive boosting methods that train ensembles of classifie...