Sciweavers

ICDM
2008
IEEE

Boosting Relational Sequence Alignments

14 years 6 months ago
Boosting Relational Sequence Alignments
The task of aligning sequences arises in many applications. Classical dynamic programming approaches require the explicit state enumeration in the reward model. This is often impractical: the number of states grows very quickly with the number of domain objects and relations among these objects. Relational sequence alignment aims at exploiting symbolic structure to avoid the full enumeration. This comes at the expense of a more complex reward model selection problem: virtually infinitely many abstraction levels have to be explored. In this paper, we apply gradientbased boosting to leverage this problem. Specifically, we show how to reduce the learning problem to a series of relational regressions problems. The main benefit of this is that interactions between states variables are introduced only as needed, so that the potentially infinite search space is not explicitly considered. As our experimental results show, this boosting approach can significantly improve upon established ...
Andreas Karwath, Kristian Kersting, Niels Landwehr
Added 30 May 2010
Updated 30 May 2010
Type Conference
Year 2008
Where ICDM
Authors Andreas Karwath, Kristian Kersting, Niels Landwehr
Comments (0)