Existing work on the capacity of wireless networks predominantly considers homogeneous random networks with random work load. The most relevant bounds on the network capacity, e.g., take into account only the number of nodes and the area of the network. However, these bounds can significantly overestimate the achievable capacity in real world situations where network topology or traffic patterns often deviate from these simplistic assumptions. To provide analytically tractable yet asymptotically tight approximations of network capacity we propose a novel space-based approach. At the heart of our methodology lie simple functions which indicate the presence of active transmissions near any given location in the network and which constitute a tool well suited to untangle the interactions of simultaneous transmissions. We are able to provide capacity bounds which are tighter than the traditional ones and which involve topology and traffic patterns explicitly, e.g., through the length of E...
Alireza Keshavarz-Haddad, Rudolf H. Riedi